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Because of recent advances in microwave

technology, such as monolithic integrated circuits,

and the use of the millimetre-wave spectrum, highly
sophisticated numerical techniques are required for

the analysis and design of microwave circuits and

components.
This paper will describe a number of numerical

methods which have been developed for the

characterization, modelling and design of microwave

and millimetre-wave passive structures, with

emphasis on planar and quasi-planar structures.

Specific advantages and disadvantages in terms of

versatility, accuracy, computer

discussed. Typical structures

representative examples of the

Jntroductlo~

time, memory, will be

will be illustrated as

methods described.

The increasing capabilities of computing

resources are modifying the way electromagnetic

problems are being approached. PC’s have computing

capabilities comparable with those of the largest

computers of a few years ago. On the other hand, main
frames and super computers offer enormous computer
powers. The advent of extremely powerful and easily

accessible computer capabilities has opened new

possibilities in the general area of applied

electromagnetic and has made it possible to attack a

variety of problems that were considered to be

inaccessible till a few years ago.
Parallel to the development of computers is the

increasing complexity of the electromagnetic

structures employed. The use of higher frequency

ranges (up to millimeter-waves) and of monolithic

circuits involves very complicated circuit

configurations. An extremely accurate control is

needed of parasitic associated with discontinuities as

well as of mechanical tolerances. In addition, the

coupling between circuit elements plays an important
role in determining the overall circuit performances.

The necessity for accurate numerical tools for

the analysis and design of the components and circuits
is even more stringent because of the virtual

impossibility of tuning the circuits realized.

For the above reasons, numerical methods are an

indispensable tool for the analysis and modeling of

electromagnetic structures. They form the basis to set
up CAD packages.

A number of numerical methods have been

proposed and developed since the advent of computers.
Each method presents its own advantages and

disadvantages. These also depend on the problem

under consideration. Selection of the method to be
adopted in the solution of a specific structure depends
on a number of considerations, such as efficiency,

accuracy, memory requirement, versatility. Besides,

each method can be implemented according to many

different formulations. Different methods lead

sometimes to equivalent formulations, as well as they

can be combined together into a hybrid formulation. A
rigid classification of the various numerical methods
is therefore impossible.

This paper provides a quick survey, far from

being exhaustive, of the most popular and

representative numerical methods for the analysis and

characterization of microwave and millimeter-wave

passive components. Specific attention is devoted to

the most recent circuit configurations of integrated

circuits, i.e. planar and quasi-planar structures.

The degree of analytical preprocessing is an

important feature of numerical methods. Generally
speaking, computer efficiency increases with the

amount of analytical effort required but, at the same

time, versatility of the method is reduced. This is

because analytical forms can be developed for a

limited number of simple shapes, or, in any case,

under some simplifying hypotheses.

Numerical methods will be presented according,

roughly, to the order of increasing analytical

complexity and correspondingly decreasing

versatility.

1. Finite difference method (FDM\ [1-5]

This is the oldest and least analytical method to

transform a differential equation into a system of

algebraic equations [l-3]. Derivatives are simply
replaced by finite differences. The region of interest
is divided into nodes located on a 2- or 3- dimensional
grid. Because of the very simple algorithm required,
the method has a great versatility. It requires,
however, a large number of mesh points, thus a large

r,lemory storage, and numerical efficiency is rather

low. Another shortcoming is the diffllcuity of fitting

curved boundaries with a rectangular mesh. It should

be mentioned that FD can be formulated also in

conjunction with a variational expression. Because of

its versatility, the time domain formulation of the FDM,
the so-called TD-FD, is attracting increasing interest
among the researchers [4, 5].
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2. Transmission Line Matr ix (TLM) Method [6-8]

This is similar to the FD-TD method. Actually, it

simulates the wave propagation in the time domain by

discretizing the space into a 2- or 3-dimensional
transmission line matrix. The method is founded on the

modeling of the spatial electromagnetic field in terms

of a distributed transmission line network. Electric and
magnetic fields are made equivalent to voltage and

current on the network. The numerical calculation
starts by exciting the matrix at specific points by
voltage or current pulses. Propagation of pulses is

then evaluated at discrete time intervals. Time

synchronism is required so that all pulses reach nodes
at the same time. Simplicity of formulation and

programming, and the calculation of transients are
the main attractive of the method.

3. Finite Elem ent Met od (h FEM\ [9-14]

This method is implemented on an integral

(variational) formulation of the boundary value

problem. The region of interest is subdivided into
surface or volume elements where the unknown
function is approximated as a polynomial.
Rayleigh-Ritz procedure transforms the functional

minimization into a linear system of algebraic

equations.

FEM has certain advantages of flexibility over

FDM, as odd shaped boundaries can be fitted easily.

Boundary conditions can be incorporated into the

variational expression. The order of the polynomial
approximation is an additional degree of freedom for
numerical computations. Care must be exercised
because of the possible existence of spurious (non
physical) solutions.

4. ~oundarv element met hod (BEM) [15-17]

The wave equation is converted into an integral

over the boundary by way of Green’s identity. A

discretization procedure similar to the FEM is then

applied. Over FEM, this method has the advantage of

the reduction of one dimension, thus of CPU time and

memory storage. BEM for planar structures has been
recently formulated without the use of Green’s

function [17].

5. Method of M oments (MO M) [18-19]

This is a very general approach to convert an

analytical formulation of a boundary value problem
into a numerical formulation in the form of a linear

system of algebraic equations. The analytical
formulation may be in the form of a differential or
integral equation that can be put in the form

Lf=g

where L is a linear operator, f is the unknown
function and g is the excitation. The unknown f is

expanded in terms of basis functions fn and the

resulting equation is weighted by a set of testing
functions Wm . This is made in terms of a suitably

defined inner product. This procedure results in a
linear matrix equation in the expansion coefficients.

MOM is often used in conjunction with an
integral equation formulation.

A number of numerical methods derive from the

above general scheme. They differ from the choice of

basis and testing functions. When these are made
identical Galerkin’s method is obtained. This method is

known to be equivalent to Rayleigh-Ritz variational
procedure. Finite element method, mode matching
method and others can also be regarded as special

cases of MOM.

The numerical solution of the final matrix
equation is an essential step towards the field solution.

This is not a trivial problem, particularly for large

systems. The conjugate gradient method (CGM) is
probably the most popular method for solving matrix

equations resulting from the application of the MOM
[20-21 ]. The CGM can be incorporated into the MOM

itself so as to adaptively modify the basis and testing

functions.

6. Mode Matching Technioue (MMT][22-24]

This is a classical method for solving waveguide

discontinuity problems. The fields on both sides of the

discontinuity are expanded in terms of normal modes

of the respective guides. By virtue of orthogonal
properties, the boundary conditions are transformed
into a matrix equation in the expansion coefficients. A

quite similar technique, which strictly speaking

should be referred to as field-matching, can be used to
compute the normal modes of waveguides with

complicated cross sectional geometries [25].

The modal decomposition of the field at

discontinuities, which forms the basis of MMT, is also

the basis of a number of computational schemes for

the characterization of cascaded discontinuities.
[26-28]

7. Transverse Resonance Technioue (TRT} [29-33]

This technique was introduced many years ago

as an application of the microwave network formalism
in the analysis of waveguides and leaky-wave

antennas [29-30]. The modal network formalism is

applied in a direction perpendicular to the actual

power flow. Propagation characteristics of waveguides

containing longitudinal discontinuities, such as
metallic fins, grooves, ridges, etc., are computed in a

straigthforward manner from the transverse
resonance condition. This technique requires the

knowledge of an accurate equivalent circuit
representation of the discontinuity.

TRT has been recently generalized so as to

provide full wave analyses of both uniform [31-32] and
discontinuous [33] printed circuit transmission lines.
The method consists basically of a MMT applied in the

direction perpendicular to the plane of the circuit.

8. Soectral Domain M ethod (SDM) [34-36]

This is probably the most popular method for the

analysis of planar and quasi-planar structures, such as
micro strip, coplanar tines, Flnline, etc. Field
components are Fourier transformed in both x and z

directions of the plane of the circuit (y=()). The
boundary conditions at y=O result in two algebraic

equations relating the tangential E-field components

to the current density components over the
metallization. This matrix relation involves the Fourier

transform of the diadic Green’s function. Galerkin’s
method is then applied expanding either the electric

field or the current density in a suitable set of basis

functions. Choice depends on the prevalence of the
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metallized (e.g. slotline) or non-metal llzed (e.g.

microstrip) portion of the interface y=O. The

derivation of the transformed Green’s function can be

significantly simplified by the generalized immittance

approach [37].
SDM requires a considerable amount of

analytical preprocessing, but, by a proper choice of

tbe basis functions it leads to very small matrix sizes.

Efficiency is high, but applicability is limited to

well-shaped structures.

9.lvlethod o f lines (ML) [38, 39]

This is also a method for analyzing planar

structures of arbitrary geometry. It is a hybrid method
since it combines FDM with an analytical treatment
of the field equations. These are discretized in the

plane of the circuit. The resulting matrix differential

equation can be diagonalized by a suitable orthogonal

transformation so that, using a transmission line

representation normal to this plane, a matrix equation
is obtained in the transformed domain. This matrix
equation relates the tangential E- fteld components to

the current density over the metallization. The

vanishing of the tangential electric Field finally result
in an eigenvalue equation in the propagation constant

or in the resonant frequency.

10. Planar circuit am oacr h (PCAI [15, 40-44]

The concept of planar circuit was introduced by

Okoshi and Miyoshi [15], as a circuit element in which

one dimension is much smaller than the wavelength.
More than a numerical method, the PCA may be

regarded as a general mathematical formalism to

analyze planar structures. The planar waveguide

model (PWM) is used to characterize microstrip lines

and discontinuities by transforming the open

microstrip discontinuity into a closed waveguide

discontinuity problem [40]. Planar circuit models may

be considered as an extension of the PWM [41]. A

rigorous mathematical formalism in terms of

two-dimensional telegraphists’ equations can be

derived [42]. In the frame of the planar approach,
specific numerical techniques, such as segmentation

and desegmentation methods [43,44] have been

developed to broaden tbe applicability to complicated

circuit configurations.
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